Symmetry breaking for PGL(2) over non-archimedean local fields

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

55 Downloads (Pure)

Abstract

For a quadratic extension $\mathbb{E}/\mathbb{F}$ of non-archimedean local fields we construct explicit holomorphic families of intertwining operators between principal series representations of $\operatorname{PGL}(2,\mathbb{E})$ and $\operatorname{PGL}(2,\mathbb{F})$, also referred to as symmetry breaking operators. These families are given in terms of their distribution kernels which can be viewed as distributions on $\mathbb{E}$ depending holomorphically on the principal series parameters. For all such parameters we determine the support of these distributions, and we study their mapping properties. This leads to a classification of all intertwining operators between principal series representations, not necessarily irreducible. As an application, we show that every Steinberg representation of $\operatorname{PGL}(2,\mathbb{E})$ contains a Steinberg representation of $\operatorname{PGL}(2,\mathbb{F})$ as a direct summand of Hilbert spaces.
OriginalsprogEngelsk
TitelSymmetry breaking for PGL(2) over non-archimedean local fields
Antal sider42
StatusAccepteret/In press - 31 jan. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Symmetry breaking for PGL(2) over non-archimedean local fields'. Sammen danner de et unikt fingeraftryk.
  • Limits of p-adic geometries

    Ciobotaru, C.

    01/06/202331/05/2028

    Projekter: ProjektForskning

  • Symmetry Breaking in Mathematics

    Frahm, J., Weiske, C., Ditlevsen, J., Spilioti, P., Bang-Jensen, F. J. & Labriet, Q.

    01/08/201931/07/2024

    Projekter: ProjektForskning

Citationsformater