Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates. / Zhang, Yongchang; Maucher, Fabian Marcus Benjamin M J; Pohl, Thomas.

I: Physical Review Letters, Bind 123, 015301, 02.07.2019.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{30437d776c184b968fc79b6f55d8a4b8,
title = "Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates",
abstract = "We explore spatial symmetry breaking of a dipolar Bose-Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second-order phase transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with high modulational contrast and near-perfect superfluidity.",
author = "Yongchang Zhang and Maucher, {Fabian Marcus Benjamin M J} and Thomas Pohl",
year = "2019",
month = "7",
day = "2",
doi = "10.1103/PhysRevLett.123.015301",
language = "English",
volume = "123",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "AMER PHYSICAL SOC",

}

RIS

TY - JOUR

T1 - Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates

AU - Zhang, Yongchang

AU - Maucher, Fabian Marcus Benjamin M J

AU - Pohl, Thomas

PY - 2019/7/2

Y1 - 2019/7/2

N2 - We explore spatial symmetry breaking of a dipolar Bose-Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second-order phase transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with high modulational contrast and near-perfect superfluidity.

AB - We explore spatial symmetry breaking of a dipolar Bose-Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second-order phase transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with high modulational contrast and near-perfect superfluidity.

U2 - 10.1103/PhysRevLett.123.015301

DO - 10.1103/PhysRevLett.123.015301

M3 - Journal article

VL - 123

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

M1 - 015301

ER -