Super J-holomorphic Curves: Construction of the Moduli Space

Enno Kessler, Artan Sheshmani, Shing-Tung Yau

Publikation: Working paper/Preprint Working paperForskning

Abstract

Let M be a super Riemann surface with holomorphic distribution D and N a symplectic manifold with compatible almost complex structure J. We call a map Φ:M→N a super J-holomorphic curve if its differential maps the almost complex structure on D to J. Such a super J-holomorphic curve is a critical point for the superconformal action and satisfies a super differential equation of first order. Using component fields of this super differential equation and a transversality argument we construct the moduli space of super J-holomorphic curves as a smooth subsupermanifold of the space of maps M→N.
OriginalsprogEngelsk
UdgiverArXiv
StatusUdgivet - 13 nov. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Super J-holomorphic Curves: Construction of the Moduli Space'. Sammen danner de et unikt fingeraftryk.

Citationsformater