Abstract
On a complete non-compact Riemannian manifold M, we prove that a so-called quasi Riesz transform is always Lp bounded for 1 < p ≤ 2. If M satisfies the doubling volume property and the sub-Gaussian heat kernel estimate, we prove that the quasi Riesz transform is also of weak type (1, 1).
Originalsprog | Engelsk |
---|---|
Tidsskrift | Publicacions Matematiques |
Vol/bind | 59 |
Nummer | 2 |
Sider (fra-til) | 313-338 |
Antal sider | 26 |
ISSN | 0214-1493 |
DOI | |
Status | Udgivet - 2015 |
Udgivet eksternt | Ja |