Aarhus Universitets segl

Structure of the degenerate principal series on symmetric R-spaces and small representations

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

DOI

  • Jan Möllers
  • Benjamin Schwarz, Paderborn University, Tyskland
Let $G$ be a simple real Lie group with maximal parabolic subgroup $P$ whose
nilradical is abelian. Then $X=G/P$ is called a symmetric $R$-space. We study
the degenerate principal series representations of $G$ on $C^\infty(X)$ in the
case where $P$ is not conjugate to its opposite parabolic. We find the points
of reducibility, the composition series and all unitarizable constituents.
Among the unitarizable constituents we identify some small representations
having as associated variety the minimal nilpotent $K_{\mathbb{C}}$-orbit in
$\mathfrak{p}_{\mathbb{C}}^*$, where $K_{\mathbb{C}}$ is the complexification
of a maximal compact subgroup $K\subseteq G$ and
$\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan
decomposition.
OriginalsprogEngelsk
TidsskriftJournal of Functional Analysis
Vol/bind266
Nummer6
Sider (fra-til)3508–3542
Antal sider35
ISSN0022-1236
DOI
StatusUdgivet - 2014

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 51440135