Strong Even/Odd Pattern in the Computed Gas-Phase Stability of Dicarboxylic Acid Dimers: Implications for Condensation Thermodynamics

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Jonas Elm
  • Noora Hyttinen, University of Oulu
  • ,
  • Jack J. Lin, University of Oulu
  • ,
  • Theo Kurtén, Helsingin yliopisto
  • ,
  • Nønne L. Prisle, University of Oulu

The physical properties of small straight-chain dicarboxylic acids are well known to exhibit even/odd alternations with respect to the carbon chain length. For example, odd numbered diacids have lower melting points and higher saturation vapor pressures than adjacent even numbered diacids. This alternation has previously been explained in terms of solid-state properties, such as higher torsional strain of odd number diacids. Using quantum chemical methods, we demonstrate an additional contribution to this alternation in properties resulting from gas-phase dimer formation. Due to a combination of hydrogen bond strength and torsional strain, dimer formation in the gas phase occurs efficiently for glutaric acid (C5) and pimelic acid (C7) but is unfavorable for succinic acid (C4) and adipic acid (C6). Our results indicate that a significant fraction of the total atmospheric gas-phase concentration of glutaric and pimelic acid may consist of dimers.

OriginalsprogEngelsk
TidsskriftJournal of Physical Chemistry A
Vol/bind123
Nummer44
Sider (fra-til)9594-9599
Antal sider6
ISSN1089-5639
DOI
StatusUdgivet - 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 173207749