Aarhus Universitets segl

Stochastic differential equations for models of non-relativistic matter interacting with quantized radiation fields

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

  • 1402.2242

    Indsendt manuskript, 1,09 MB, PDF-dokument

DOI

We discuss Hilbert space-valued stochastic differential equations associated with the heat semi-groups of the standard model of non-relativistic quantum electrodynamics and of corresponding fiber Hamiltonians for translation invariant systems. In particular, we prove the existence of a stochastic flow satisfying the strong Markov property and the Feller property. To this end we employ an explicit solution ansatz. In the matrix-valued case, i.e., if the electron spin is taken into account, it is given by a series of operator-valued time-ordered integrals, whose integrands are factorized into annihilation, preservation, creation, and scalar parts. The Feynman–Kac formula implied by these results is new in the matrix-valued case. Furthermore, we discuss stochastic differential equations and Feynman–Kac representations for an operator-valued integral kernel of the semi-group. As a byproduct we obtain analogous results for Nelson’s model.

OriginalsprogEngelsk
TidsskriftProbability Theory and Related Fields
Vol/bind167
Nummer3-4
Sider (fra-til)817-915
Antal sider99
ISSN0178-8051
DOI
StatusUdgivet - 2017

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 95965274