Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Indsendt manuskript, 1,09 MB, PDF-dokument
Forlagets udgivne version
We discuss Hilbert space-valued stochastic differential equations associated with the heat semi-groups of the standard model of non-relativistic quantum electrodynamics and of corresponding fiber Hamiltonians for translation invariant systems. In particular, we prove the existence of a stochastic flow satisfying the strong Markov property and the Feller property. To this end we employ an explicit solution ansatz. In the matrix-valued case, i.e., if the electron spin is taken into account, it is given by a series of operator-valued time-ordered integrals, whose integrands are factorized into annihilation, preservation, creation, and scalar parts. The Feynman–Kac formula implied by these results is new in the matrix-valued case. Furthermore, we discuss stochastic differential equations and Feynman–Kac representations for an operator-valued integral kernel of the semi-group. As a byproduct we obtain analogous results for Nelson’s model.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Probability Theory and Related Fields |
Vol/bind | 167 |
Nummer | 3-4 |
Sider (fra-til) | 817-915 |
Antal sider | 99 |
ISSN | 0178-8051 |
DOI | |
Status | Udgivet - 2017 |
Se relationer på Aarhus Universitet Citationsformater
ID: 95965274