Stochastic Differential Equations Driven by Loops

Fabrice Baudoin*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingBidrag til bog/antologiForskningpeer review

Abstract

We study stochastic differential equations of the type (formula presented) where (Ms)0 ≤ s ≤ T is a semimartingale generating a loop in the free Carnot group of step N and show how the properties of the random variable XT x are closely related to the Lie subalgebra generated by the commutators of the Vi’s with length greater than N + 1. It is furthermore shown that if f is a smooth function, then (formula presented) is a second order operator related to the Vi′s.

OriginalsprogEngelsk
TitelProgress in Probability
Antal sider22
ForlagBirkhauser
Publikationsdato2015
Sider59-80
DOI
StatusUdgivet - 2015
Udgivet eksterntJa
NavnProgress in Probability
Vol/bind69
ISSN1050-6977

Fingeraftryk

Dyk ned i forskningsemnerne om 'Stochastic Differential Equations Driven by Loops'. Sammen danner de et unikt fingeraftryk.

Citationsformater