Aarhus Universitets segl

Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Anna-Maria Virkkala, Woodwell Climate Research Centre, University of Helsinki
  • ,
  • Juha Aalto, University of Helsinki, Finnish Meteorological Institute
  • ,
  • Brendan M. Rogers, Woodwell Climate Research Centre
  • ,
  • Torbern Tagesson, Københavns Universitet, Lund University
  • ,
  • Claire C. Treat, Helmholtz-Gemeinschaft Deutscher Forschungszentren
  • ,
  • Susan M. Natali, Woodwell Climate Research Centre
  • ,
  • Jennifer D. Watts, Woodwell Climate Research Centre
  • ,
  • Stefano Potter, Woodwell Climate Research Centre
  • ,
  • Aleksi Lehtonen, Natural Resources Institute Finland
  • ,
  • Marguerite Mauritz, University of Texas at El Paso
  • ,
  • Edward A. G. Schuur, Northern Arizona University
  • ,
  • John Kochendorfer, NOAAs Air Resources Lab, Atmosper Turbulence & Diffus Div
  • ,
  • Donatella Zona, San Diego State University, University of Sheffield
  • ,
  • Walter Oechel, San Diego State University, University of Exeter
  • ,
  • Hideki Kobayashi, Japan Agency for Marine-Earth Science and Technology
  • ,
  • Elyn Humphreys, Carleton University
  • ,
  • Mathias Goeckede, Max Planck Institute for Biogeochemistry
  • ,
  • Hiroki Iwata, Shinshu University
  • ,
  • Peter M. Lafleur, Trent University
  • ,
  • Eugenie S. Euskirchen, University of Alaska Fairbanks
  • ,
  • Stef Bokhorst, Vrije Universiteit Amsterdam
  • ,
  • Maija Marushchak, University of Eastern Finland
  • ,
  • Pertti J. Martikainen, University of Eastern Finland
  • ,
  • Bo Elberling, Københavns Universitet
  • ,
  • Carolina Voigt, University of Eastern Finland, Université de Montréal
  • ,
  • Christina Biasi, University of Eastern Finland
  • ,
  • Oliver Sonnentag, Université de Montréal
  • ,
  • Frans-Jan W. Parmentier, Lund University, University of Oslo
  • ,
  • Masahito Ueyama, Osaka Prefecture University
  • ,
  • Gerardo Celis, University of Florida
  • ,
  • Vincent L. St.Louis, University of Alberta
  • ,
  • Craig A. Emmerton, University of Alberta
  • ,
  • Matthias Peichl, Swedish University of Agricultural Sciences
  • ,
  • Jinshu Chi, Swedish University of Agricultural Sciences
  • ,
  • Jarvi Jarveoja, Swedish University of Agricultural Sciences
  • ,
  • Mats B. Nilsson, Swedish University of Agricultural Sciences
  • ,
  • Steven F. Oberbauer, Florida International University
  • ,
  • Margaret S. Torn, University of California
  • ,
  • Sang-Jong Park, Korea Polar Research Institute
  • ,
  • Han Dolman, The Free University of Amsterdam
  • ,
  • Ivan Mammarella, University of Helsinki
  • ,
  • Namyi Chae, Korea University
  • ,
  • Rafael Poyatos, Autonomous University of Barcelona
  • ,
  • Efren Lopez-Blanco
  • Torben Rojle Christensen
  • Min Jung Kwon, Laboratoire des Sciences du Climat et de l'Environnement, Korea Polar Research Institute
  • ,
  • Torsten Sachs, GFZ German Research Centre for Geosciences
  • ,
  • David Holl, University of Hamburg
  • ,
  • Miska Luoto, University of Helsinki

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km(2)) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m(-2) yr(-1), respectively) compared to tundra (average annual NEE +10 and -2 g C m(-2) yr(-1)). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.

OriginalsprogEngelsk
TidsskriftGlobal change biology
Vol/bind27
Nummer17
Sider (fra-til)4040-4059
Antal sider20
ISSN1354-1013
DOI
StatusUdgivet - sep. 2021

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 218599124