Stable pairs on nodal K3 fibrations

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

  • Nodal-6

    Accepteret manuskript, 484 KB, PDF-dokument

  • pdf

    410 KB, PDF-dokument

DOI

We study Pandharipande-Thomas's stable pair theory on K3 brations over curves with possibly nodal fibers. We describe stable pair invariants of the berwise irreducible curve classes in terms of Kawai-Yoshioka's formula for the Euler characteristics of moduli spaces of stable pairs on K3 surfaces and Noether-Lefschetz numbers of the
fibration. Moreover, we investigate the relation of these invariants with the perverse (non-commutative) stable pair invariants of the K3 fibration. In the case that the K3 fibration is a projective Calabi-Yau threefold, by means of wall-crossing techniques, we write the stable pair invariants in terms of the generalized Donaldson-Thomas invariants of 2-dimensional Gieseker semistable sheaves supported on the fibers.
OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2018
Nummer17
Sider (fra-til)5297-5346
ISSN1073-7928
DOI
StatusUdgivet - sep. 2018
Eksternt udgivetJa

    Forskningsområder

  • math.AG, hep-th

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 103280334