Spectral aspect subconvex bounds for Un+1× Un

Paul D. Nelson*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Abstract

Let (π, σ) traverse a sequence of pairs of cuspidal automorphic representations of a unitary Gan–Gross–Prasad pair (Un+1, Un) over a number field, with Un anisotropic. We assume that at some distinguished archimedean place, the pair stays away from the conductor dropping locus, while at every other place, the pair has bounded ramification and satisfies certain local conditions (in particular, temperedness). We prove that the subconvex bound L(π×σ,1/2)≪C(π×σ)1/4-δholds for any fixed δ<18n5+28n4+42n3+36n2+14n.Among other ingredients, the proof employs a refinement of the microlocal calculus for Lie group representations developed with A. Venkatesh and an observation of S. Marshall concerning the geometric side of the relative trace formula.

OriginalsprogEngelsk
TidsskriftInventiones Mathematicae
Vol/bind232
Nummer3
Sider (fra-til)1273-1438
Antal sider166
ISSN0020-9910
DOI
StatusUdgivet - jun. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Spectral aspect subconvex bounds for Un+1× Un'. Sammen danner de et unikt fingeraftryk.

Citationsformater