Abstract
In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar–Schoen, the approach by limit of discrete p-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for p > 1. As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain Lp-Poincaré inequalities for all values of p ≥ 1.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Annales Fennici Mathematici |
Vol/bind | 48 |
Nummer | 1 |
Sider (fra-til) | 3-26 |
Antal sider | 24 |
ISSN | 2737-0690 |
DOI | |
Status | Udgivet - 2022 |
Udgivet eksternt | Ja |