Aarhus Universitets segl

Smart Meter Data Compression using Generalized Deduplication

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

Dokumenter

  • 1570643131

    Accepteret manuskript, 570 KB, PDF-dokument

DOI

  • Marcell Fehér
  • ,
  • Niloofar Yazdani
  • ,
  • Morten Tranberg Hansen, Kamstrup A/S, Danmark
  • Flemming Enevold Vester, Kamstrup A/S, Danmark
  • Daniel Enrique Lucani Rötter
Utility providers are relying more often on smart, wirelessly connected smart meters to collect consumption information of their customers. The sheer amount of connected smart meters and the growing requirements to provide more frequent reports from each device are putting a large strain on existing systems and protocols. In this paper, we propose three novel lossless compression schemes that significantly reduce the size of standard DLMS data messages uploaded by smart electricity meters. Using real life data sets, we show that these methods can achieve compression rates of over 90% while being transparent to the DLMS protocol and eliminating the privacy concerns of the existing compression methods.
OriginalsprogEngelsk
Titel2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings : Proceedings
Antal sider6
ForlagIEEE
Udgivelsesår2020
Artikelnummer9322393
ISBN (Elektronisk)978-1-7281-8298-8
DOI
StatusUdgivet - 2020
Begivenhed2020 IEEE Global Communications Conference - Taipei, Taiwan + Online (Hybrid), Taipei, Taiwan
Varighed: 7 dec. 202011 dec. 2020
https://globecom2020.ieee-globecom.org/

Konference

Konference2020 IEEE Global Communications Conference
LokationTaipei, Taiwan + Online (Hybrid)
LandTaiwan
ByTaipei
Periode07/12/202011/12/2020
Internetadresse

Se relationer på Aarhus Universitet Citationsformater

Projekter

Download-statistik

Ingen data tilgængelig

ID: 210861423