Shifted symplectic structures on derived Quot-stacks I – Differential graded manifolds –

Dennis Borisov, Ludmil Katzarkov, Artan Sheshmani*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

A theory of dg schemes is developed so that it becomes a homotopy site, and the corresponding infinity category of stacks is equivalent to the infinity category of stacks, as constructed by Toën and Vezzosi, on the site of dg algebras whose cohomologies have finitely many generators in each degree. Stacks represented by dg schemes are shown to be derived schemes under this correspondence.

OriginalsprogEngelsk
Artikelnummer108369
TidsskriftAdvances in Mathematics
Vol/bind403
Antal sider31
ISSN0001-8708
DOI
StatusUdgivet - jul. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Shifted symplectic structures on derived Quot-stacks I – Differential graded manifolds –'. Sammen danner de et unikt fingeraftryk.

Citationsformater