Self-similarity and fractional Brownian motions on lie groups

Fabrice Baudoin, Laure Coutin

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

6 Citationer (Scopus)

Abstract

The goal of this paper is to define and study a notion of fractional Brownian motion on a Lie group. We define it as at the solution of a stochastic differential equation driven by a linear fractional Brownian motion. We show that this process has stationary increments and satisfies a local self-similar property. Furthermore the Lie groups for which this self-similar property is global are characterized.

OriginalsprogEngelsk
TidsskriftElectronic Journal of Probability
Vol/bind13
Sider (fra-til)1120-1139
Antal sider20
ISSN1083-6489
DOI
StatusUdgivet - 1 jan. 2008
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Self-similarity and fractional Brownian motions on lie groups'. Sammen danner de et unikt fingeraftryk.

Citationsformater