Aarhus University Seal / Aarhus Universitets segl

Seismic characterization of a rapidly-rising jökulhlaup cycle at the A.P. Olsen Ice Cap, NE-Greenland

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Michael Behm, University of Oklahoma in Norman, Oklahoma, USA
  • ,
  • Jacob I. Walter, University of Oklahoma in Norman, Oklahoma, USA
  • ,
  • Daniel Binder, ZAMG e Zentralanstalt für Meteorologie und Geodynamik, Geological Survey of Denmark and Greenland, Austrian Polar Research Institute
  • ,
  • Feng Cheng, Lawrence Berkeley National Laboratory
  • ,
  • Michele Citterio, Geological Survey of Denmark and Greenland
  • ,
  • Bernd Kulessa, Swansea University
  • ,
  • Kirsty Langley, Asiaq
  • ,
  • Phillipe Limpach, Eidgenossische Technische Hochschule Zurich
  • ,
  • Stefan Mertl, Mertl Research GmbH
  • ,
  • Wolfgang Schöner, Austrian Polar Research Institute, University of Graz
  • ,
  • Mikkel Tamstorf
  • Gernot Weyss, ZAMG e Zentralanstalt für Meteorologie und Geodynamik, Austrian Polar Research Institute

Abstract Rapidly-rising jökulhlaups, or glacial outburst floods, are a phenomenon with a high potential for damage. The initiation and propagation processes of a rapidly-rising jökulhlaup are still not fully understood. Seismic monitoring can contribute to an improved process understanding, but comprehensive long-term seismic monitoring campaigns capturing the dynamics of a rapidly-rising jökulhlaup have not been reported so far. To fill this gap, we installed a seismic network at the marginal, ice-dammed lake of the A.P. Olsen Ice Cap (APO) in NE-Greenland. Episodic outbursts from the lake cause flood waves in the Zackenberg river, characterized by a rapid discharge increase within a few hours. Our 6 months long seismic dataset comprises the whole fill-and-drain cycle of the ice-dammed lake in 2012 and includes one of the most destructive floods recorded so far for the Zackenberg river. Seismic event detection and localization reveals abundant surface crevassing and correlates with changes of the river discharge. Seismic interferometry suggests the existence of a thin basal sedimentary layer. We show that the ballistic part of the first surface waves can potentially be used to infer medium changes in both the ice body and the basal layer. Interpretation of time-lapse interferograms is challenged by a varying ambient noise source distribution.

OriginalsprogEngelsk
TidsskriftJournal of Glaciology
Vol/bind66
Nummer256
Sider (fra-til)329-347
Antal sider19
ISSN0022-1430
DOI
StatusUdgivet - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 182698376