Projekter pr. år
Abstract
The skyline is an important query operator for multi-criteria decision making. It reduces a dataset to only those points that offer optimal trade-offs of dimensions. In general, it is very expensive to compute. Recently, multi-core CPU algorithms have been proposed to accelerate the computation of the skyline. However, they do not sufficiently minimize dominance tests and so are not competitive with state-of-the-art sequential algorithms.
In this paper, we introduce a novel multi-core skyline algorithm, Hybrid, which processes points in blocks. It maintains a shared, global skyline among all threads, which is used to minimize dominance tests while maintaining high throughput. The algorithm uses an efficiently-updatable data structure over the shared, global skyline, based on point-based partitioning. Also, we release a large benchmark of optimized skyline algorithms, with which we demonstrate on challenging workloads a 100-fold speedup over state-of-the-art multi-core algorithms and a 10-fold speedup with 16 cores over state-of-the-art sequential algorithms.
In this paper, we introduce a novel multi-core skyline algorithm, Hybrid, which processes points in blocks. It maintains a shared, global skyline among all threads, which is used to minimize dominance tests while maintaining high throughput. The algorithm uses an efficiently-updatable data structure over the shared, global skyline, based on point-based partitioning. Also, we release a large benchmark of optimized skyline algorithms, with which we demonstrate on challenging workloads a 100-fold speedup over state-of-the-art multi-core algorithms and a 10-fold speedup with 16 cores over state-of-the-art sequential algorithms.
Originalsprog | Engelsk |
---|---|
Titel | 31st IEEE International Conference on Data Engineering (ICDE 2015) |
Antal sider | 12 |
Forlag | IEEE Computer Society Press |
Publikationsdato | 2015 |
Sider | 1083 - 1094 |
DOI | |
Status | Udgivet - 2015 |
Begivenhed | International Conference on Data Engineering - Seoul, Sydkorea Varighed: 13 apr. 2015 → 17 apr. 2015 Konferencens nummer: 31 |
Konference
Konference | International Conference on Data Engineering |
---|---|
Nummer | 31 |
Land/Område | Sydkorea |
By | Seoul |
Periode | 13/04/2015 → 17/04/2015 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Scalable Parallelization of Skyline Computation for Multi-core Processors'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
WallViz: Improving decision making from massive data collections using wall-sized, highly interactive visualizations
Assent, I. (Deltager), Mortensen, M. L. (Deltager), Magnani, M. (Deltager) & Bøgh, K. (Deltager)
01/04/2011 → …
Projekter: Projekt › Forskning
Aktiviteter
- 2 Foredrag og mundtlige bidrag
-
Why Throughput Isn't Everything: The Case of Parallelizing Skyline Queries
Chester, S. (Oplægsholder)
14 sep. 2015Aktivitet: Præsentationer, medlemskaber, ansættelser, ejerskab og andre aktiviteter › Foredrag og mundtlige bidrag
-
Why Throughput Isn't Everything: The Case of Parallelizing Skyline Queries
Chester, S. (Oplægsholder)
10 sep. 2015Aktivitet: Præsentationer, medlemskaber, ansættelser, ejerskab og andre aktiviteter › Foredrag og mundtlige bidrag