Abstract
In this paper, we propose a graph affinity learning method for a recently proposed graph-based salient object detection method, namely Extended Quantum Cuts (EQCut). We exploit the fact that the output of EQCut is differentiable with respect to graph affinities, in order to optimize linear combination coefficients and parameters of several differentiable affinity functions by applying error backpropagation. We show that the learnt linear combination of affinities improves the performance over the baseline method and achieves comparable (or even better) performance when compared to the state-of-the-art salient object segmentation methods.
Originalsprog | Engelsk |
---|---|
Titel | 2016 23rd International Conference on Pattern Recognition, ICPR 2016 |
Antal sider | 6 |
Forlag | IEEE |
Publikationsdato | 1 jan. 2016 |
Sider | 3769-3774 |
Artikelnummer | 7900221 |
ISBN (Elektronisk) | 9781509048472 |
DOI | |
Status | Udgivet - 1 jan. 2016 |
Udgivet eksternt | Ja |
Begivenhed | 23rd International Conference on Pattern Recognition - CANCUN INTERNATIONAL CONVENTION CENTER, Cancun, Mexico Varighed: 4 dec. 2016 → 8 dec. 2016 http://www.icpr2016.org/site/ |
Konference
Konference | 23rd International Conference on Pattern Recognition |
---|---|
Lokation | CANCUN INTERNATIONAL CONVENTION CENTER |
Land/Område | Mexico |
By | Cancun |
Periode | 04/12/2016 → 08/12/2016 |
Internetadresse |