Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Let K be an algebraically closed field, let n be a positive integer. Consider the general linear Lie algebra of all (n × n)-matrices over K and its subalgebra of all matrices with trace equal to 0, the special linear Lie algebra. If the characteristic of K does not divide n, then the larger Lie algebra is the direct product of the smaller Lie algebra with a one dimensional Lie algebra; in this case each finite dimensional simple module for the general linear Lie algebra restricts to a simple module for the special linear Lie algebra. This is no longer the case when the characteristic of K divides n; the purpose of this paper is to describe what happens in this situation.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Lie Theory |
Vol/bind | 27 |
Nummer | 4 |
Sider (fra-til) | 969 - 981 |
Antal sider | 13 |
ISSN | 0949-5932 |
Status | Udgivet - 1 dec. 2017 |
Se relationer på Aarhus Universitet Citationsformater
ID: 118910123