Aarhus Universitets segl

Règles de branchement pour les groupes de Lie semi-simples et les noyaux reproduisants

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


  • Bent Ørsted
  • Jorge A. Vargas, Universidad Nacional de Cordoba

For a semisimple Lie group G satisfying the equal rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In this paper, we study some of the branching laws for these when restricted to a subgroup H of the same type by combining the classical results with the recent work of T. Kobayashi. We analyze aspects of having differential operators being symmetry-breaking operators; in particular, we prove in the so-called admissible case that every symmetry breaking (H-map) operator is a differential operator. We prove discrete decomposability under Harish-Chandra's condition of cusp form on the reproducing kernels. Our techniques are based on realizing discrete series representations as kernels of elliptic invariant differential operators.

Bidragets oversatte titelBranching problems for semisimple Lie groups and reproducing kernels
TidsskriftComptes Rendus Mathematique
Sider (fra-til)697-707
Antal sider11
StatusUdgivet - sep. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 169529592