Aarhus University Seal / Aarhus Universitets segl

Règles de branchement pour les groupes de Lie semi-simples et les noyaux reproduisants

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


  • Bent Ørsted
  • Jorge A. Vargas, Universidad Nacional de Córdoba

For a semisimple Lie group G satisfying the equal rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In this paper, we study some of the branching laws for these when restricted to a subgroup H of the same type by combining the classical results with the recent work of T. Kobayashi. We analyze aspects of having differential operators being symmetry-breaking operators; in particular, we prove in the so-called admissible case that every symmetry breaking (H-map) operator is a differential operator. We prove discrete decomposability under Harish-Chandra's condition of cusp form on the reproducing kernels. Our techniques are based on realizing discrete series representations as kernels of elliptic invariant differential operators.

TidsskriftComptes Rendus Mathematique
Sider (fra-til)697-707
Antal sider11
StatusUdgivet - sep. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 169529592