Recoverable Recommended Keypoint-aware Visual Tracking Using Coupled-layer Appearance Modelling

Ran Duan, Changhong Fu, Erdal Kayacan

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

2 Citationer (Scopus)

Abstract

Object tracking over image sequences plays an remarkably crucial role in several computer vision applications, interalia, automated video surveillance, unmanned aerial vehicles and 3D reconstruction. In this paper, a novel, accurate, robust and recoverable real-time feature-based tracking framework is presented. The appearance modelling consists of a local and global layer. We propose a recommended keypointaware (RKA) tracker, which is fast and accurate, for the former, while the latter employs support vector machine (SVM) to determine the object and background, so that the RKA tracker can be recovered under possible target losing circumstances. Furthermore, the RKA tracker converts the tracking problem into the ranking of samples which provides a score of tracking confidence. Therefore, the priority switching between the local layer and global layer dependent upon the score becomes valid. Extensive experiments have been done by strictly following the visual tracking benchmark v1.0 protocol. The results demonstrate that the proposed novel method outperforms the stateofthe-art trackers in terms of robustness, speed and accuracy.

OriginalsprogEngelsk
TitelIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
Antal sider7
ForlagIEEE
Publikationsdato28 nov. 2016
Sider4085-4091
Artikelnummer7759601
ISBN (Trykt)978-1-5090-3762-9
ISBN (Elektronisk)9781509037629
DOI
StatusUdgivet - 28 nov. 2016
Udgivet eksterntJa
Begivenhed2016 IEEE/RSJ International Conference on Intelligent Robots and Systems - Daejeon Convention Center, Daejeon, Sydkorea
Varighed: 9 okt. 201614 okt. 2016
http://www.iros2016.org/

Konference

Konference2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
LokationDaejeon Convention Center
Land/OmrådeSydkorea
ByDaejeon
Periode09/10/201614/10/2016
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Recoverable Recommended Keypoint-aware Visual Tracking Using Coupled-layer Appearance Modelling'. Sammen danner de et unikt fingeraftryk.

Citationsformater