Reconstruction of singular and degenerate inclusions in Calderón's problem

Henrik Garde*, Nuutti Hyvönen

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We consider the reconstruction of the support of an unknown perturbation to a known conductivity coefficient in Calderón's problem. In a previous result by the authors on monotonicity-based reconstruction, the perturbed coefficient is allowed to simultaneously take the values $0$ and $\infty$ in some parts of the domain and values bounded away from $0$ and $\infty$ elsewhere. We generalise this result by allowing the unknown coefficient to be the restriction of an $A_2$-Muckenhoupt weight in parts of the domain, thereby including singular and degenerate behaviour in the governing equation. In particular, the coefficient may tend to $0$ and $\infty$ in a controlled manner, which goes beyond the standard setting of Calderón's problem. Our main result constructively characterises the outer shape of the support of such a general perturbation, based on a local Neumann-to-Dirichlet map defined on an open subset of the domain boundary.
OriginalsprogEngelsk
TidsskriftInverse Problems and Imaging
Vol/bind16
Nummer5
Sider (fra-til)1219-1227
Antal sider9
ISSN1930-8337
DOI
StatusUdgivet - aug. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Reconstruction of singular and degenerate inclusions in Calderón's problem'. Sammen danner de et unikt fingeraftryk.

Citationsformater