Reconstruction of Convex Bodies from Moments

Astrid Kousholt, Julia Schulte*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which are uniquely determined by a finite number of moments form a dense set. Further, we derive a stability result for convex bodies based on geometric moments. It turns out that the stability result is improved considerably by using another set of moments, namely Legendre moments. We present a reconstruction algorithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stability result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under certain assumptions on the variance of the noise variables.

OriginalsprogEngelsk
TidsskriftDiscrete & Computational Geometry
Vol/bind65
Nummer1
Sider (fra-til)1-42
Antal sider42
ISSN0179-5376
DOI
StatusUdgivet - jan. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Reconstruction of Convex Bodies from Moments'. Sammen danner de et unikt fingeraftryk.

Citationsformater