Quasi-Invariance for Infinite-Dimensional Kolmogorov Diffusions

Fabrice Baudoin, Maria Gordina*, Tai Melcher

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

We prove Cameron-Martin type quasi-invariance for the heat kernel measure of infinite-dimensional Kolmogorov and similar degenerate diffusions. We first study quantitative functional inequalities, particularly Wang-type Harnack inequalities, for appropriate finite-dimensional approximations of these diffusions, and we prove that these inequalities hold with dimension-independent constants. Applying an approach developed in [7, 12, 13], these uniform bounds may then be used to prove that the heat kernel measure for these infinite-dimensional diffusions is quasi-invariant under changes of the initial state.

OriginalsprogEngelsk
TidsskriftPotential Analysis
Vol/bind60
Nummer2
Sider (fra-til)807-831
Antal sider25
ISSN0926-2601
DOI
StatusUdgivet - feb. 2024
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Quasi-Invariance for Infinite-Dimensional Kolmogorov Diffusions'. Sammen danner de et unikt fingeraftryk.

Citationsformater