TY - JOUR
T1 - Pregnancy-associated plasma protein-A2 modulates development of cranial cartilage and angiogenesis in zebrafish embryos
AU - Kjaer-Sorensen, Kasper
AU - Engholm, Ditte Høyer
AU - Jepsen, Malene R
AU - Morch, Maria G
AU - Weyer, Kathrin
AU - Hefting, Louise L
AU - Skov, Louise L
AU - Laursen, Lisbeth S
AU - Oxvig, Claus
PY - 2014/9/18
Y1 - 2014/9/18
N2 - Pregnancy-associated plasma protein-A2 (PAPP-A2, pappalysin-2) is a large metalloproteinase, known to be required for normal postnatal growth and bone development in mice. We here report the detection of zebrafish papp-a2 mRNA in chordamesoderm, notochord, and lower jaw of zebrafish (Danio rerio) embryos, and that papp-a2 knockdown embryos display broadened axial mesoderm, notochord bends, and severely reduced cranial cartilages. Genetic data link these phenotypes to insulin-like growth factor binding protein-3 (Igfbp-3) and Bmp signaling, and biochemical analysis show specific Igfbp-3 proteolysis by Papp-a2, implicating Papp-a2 in the modulation of Bmp signaling by Igfbp-3 proteolysis. Knockdown of papp-a2 additionally resulted in angiogenesis defects, strikingly similar to previous observations in embryos with mutations in components of the Notch system. Concordantly, we find that Notch signaling is modulated by Papp-a2 in vivo, and, furthermore, that PAPP-A2 is capable of modulating Notch signaling independently of its proteolytic activity in cell culture. Based on these results, we conclude that Papp-a2 modulates Bmp and Notch signaling by independent mechanisms in zebrafish embryos. In conclusion, these data link pappalysin function in zebrafish to two different signaling pathways outside the IGF system.
AB - Pregnancy-associated plasma protein-A2 (PAPP-A2, pappalysin-2) is a large metalloproteinase, known to be required for normal postnatal growth and bone development in mice. We here report the detection of zebrafish papp-a2 mRNA in chordamesoderm, notochord, and lower jaw of zebrafish (Danio rerio) embryos, and that papp-a2 knockdown embryos display broadened axial mesoderm, notochord bends, and severely reduced cranial cartilages. Genetic data link these phenotypes to insulin-like growth factor binding protein-3 (Igfbp-3) and Bmp signaling, and biochemical analysis show specific Igfbp-3 proteolysis by Papp-a2, implicating Papp-a2 in the modulation of Bmp signaling by Igfbp-3 proteolysis. Knockdown of papp-a2 additionally resulted in angiogenesis defects, strikingly similar to previous observations in embryos with mutations in components of the Notch system. Concordantly, we find that Notch signaling is modulated by Papp-a2 in vivo, and, furthermore, that PAPP-A2 is capable of modulating Notch signaling independently of its proteolytic activity in cell culture. Based on these results, we conclude that Papp-a2 modulates Bmp and Notch signaling by independent mechanisms in zebrafish embryos. In conclusion, these data link pappalysin function in zebrafish to two different signaling pathways outside the IGF system.
U2 - 10.1242/jcs.152587
DO - 10.1242/jcs.152587
M3 - Journal article
C2 - 25236600
SN - 0021-9533
JO - Journal of Cell Science
JF - Journal of Cell Science
ER -