Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data

Magdalena Mazur-Milecka*, Natalia Kowalczyk, Kinga Jaguszewska, Dorota Zamkowska, Dariusz Wójcik, Krzysztof Preis, Henriette Skov, Stefan Wagner, Puk Sandager, Milena Sobotka, Jacek Rumiński

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

1 Citationer (Scopus)

Abstract

This paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost and EBM consistently outperform the other models. An analysis of patient subsets based on their pregnancy history was also conducted, revealing that the group of patients in their first pregnancy achieved the highest prediction accuracy. Additionally, the study explored the efficacy of risk prediction based on various parameters and found that the results vary depending on the models used and the degree of class balance in the database. Finally, an additional test was performed on the dataset annotated by physicians.

OriginalsprogEngelsk
TitelThe Latest Developments and Challenges in Biomedical Engineering : Proceedings of the 23rd Polish Conference on Biocybernetics and Biomedical Engineering, Lodz, Poland, September 27–29, 2023
RedaktørerPaweł Strumiłło, Artur Klepaczko, Michał Strzelecki, Dorota Bociąga
Antal sider15
UdgivelsesstedCham
ForlagSpringer
Publikationsdatosep. 2023
Sider267-281
ISBN (Trykt)978-3-031-38429-5
ISBN (Elektronisk)978-3-031-38430-1
DOI
StatusUdgivet - sep. 2023
BegivenhedProceedings of the 23rd Polish Conference on Biocybernetics and Biomedical Engineering, PCBEE 2023 - Lodz, Polen
Varighed: 27 sep. 202329 sep. 2023

Konference

KonferenceProceedings of the 23rd Polish Conference on Biocybernetics and Biomedical Engineering, PCBEE 2023
Land/OmrådePolen
ByLodz
Periode27/09/202329/09/2023
NavnLecture Notes in Networks and Systems
Vol/bind746
ISSN2367-3370

Fingeraftryk

Dyk ned i forskningsemnerne om 'Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data'. Sammen danner de et unikt fingeraftryk.

Citationsformater