Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Predicting drag on rough surfaces by transfer learning of empirical correlations
AU - Lee, Sangseung
AU - Yang, Jiasheng
AU - Forooghi, Pourya
AU - Stroh, Alexander
AU - Bagheri, Shervin
PY - 2022/2/25
Y1 - 2022/2/25
N2 - Recent developments in neural networks have shown the potential of estimating drag on irregular rough surfaces. Nevertheless, the difficulty of obtaining a large high-fidelity dataset to train neural networks is deterring their use in practical applications. In this study, we propose a transfer learning framework to model the drag on irregular rough surfaces even with a limited amount of direct numerical simulations. We show that transfer learning of empirical correlations, reported in the literature, can significantly improve the performance of neural networks for drag prediction. This is because empirical correlations include 'approximate knowledge' of the drag dependency in high-fidelity physics. The 'approximate knowledge' allows neural networks to learn the surface statistics known to affect drag more efficiently. The developed framework can be applied to applications where acquiring a large dataset is difficult but empirical correlations have been reported.
AB - Recent developments in neural networks have shown the potential of estimating drag on irregular rough surfaces. Nevertheless, the difficulty of obtaining a large high-fidelity dataset to train neural networks is deterring their use in practical applications. In this study, we propose a transfer learning framework to model the drag on irregular rough surfaces even with a limited amount of direct numerical simulations. We show that transfer learning of empirical correlations, reported in the literature, can significantly improve the performance of neural networks for drag prediction. This is because empirical correlations include 'approximate knowledge' of the drag dependency in high-fidelity physics. The 'approximate knowledge' allows neural networks to learn the surface statistics known to affect drag more efficiently. The developed framework can be applied to applications where acquiring a large dataset is difficult but empirical correlations have been reported.
KW - machine learning
U2 - 10.1017/jfm.2021.1041
DO - 10.1017/jfm.2021.1041
M3 - Journal article
VL - 933
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
M1 - A18
ER -