Predicting cryptocurrency crash dates

C. Vladimir Rodríguez-Caballero*, Mauricio Villanueva-Domínguez

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

The nature and novelty of crypto markets have given rise to speculative bubbles, which have permeated almost all cryptocurrencies. This paper shows that the log-periodic model with conditional heteroscedasticity structures has predictive capabilities to estimate the most likely crash date of cryptocurrency bubbles. We use the 2017 bitcoin bubble to perform the primary analysis and date a potential crash just four days before the price peak. We detect the crash date a month before the Bitcoin prices reach their highest value. The bitcoin price fell 30% two weeks after reaching its maximum value. Robustness exercises include the Ether bubble in 2021 and others in Bitcoin’s history to show that the model can be helpful to crypto investors.

OriginalsprogEngelsk
TidsskriftEmpirical Economics
Vol/bind63
Nummer6
Sider (fra-til)2855-2873
Antal sider19
ISSN0377-7332
DOI
StatusUdgivet - dec. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Predicting cryptocurrency crash dates'. Sammen danner de et unikt fingeraftryk.

Citationsformater