PET Normalizations to Improve Deep Learning Auto-Segmentation of Head and Neck Tumors in 3D PET/CT

Jintao Ren, Bao Ngoc Huynh, Aurora Rosvoll Groendahl, Oliver Tomic, Cecilia Marie Futsaether, Stine Sofia Korreman*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

9 Citationer (Scopus)

Abstract

Auto-segmentation of head and neck cancer (HNC) primary gross tumor volume (GTVt) is a necessary but challenging process for radiotherapy treatment planning and radiomics studies. The HEad and neCK TumOR Segmentation Challenge (HECKTOR) 2021 comprises two major tasks: auto-segmentation of GTVt in FDG-PET/CT images and the prediction of patient outcomes. In this paper, we focus on the segmentation part by proposing two PET normalization methods to mitigate impacts from intensity variances between PET scans for deep learning-based GTVt auto-segmentation. We also compared the performance of three popular hybrid loss functions. An ensemble of our proposed models achieved an average Dice Similarity Coefficient (DSC) of 0.779 and median 95% Hausdorff Distance (HD95) of 3.15 mm on the test set. Team: Aarhus_Oslo.
OriginalsprogEngelsk
TitelHead and Neck Tumor Segmentation and Outcome Prediction - 2nd Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021, Proceedings : Second Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
RedaktørerVincent Andrearczyk, Valentin Oreiller, Mathieu Hatt, Adrien Depeursinge
Antal sider9
UdgivelsesstedCham
ForlagSpringer
Publikationsdatomar. 2022
Sider83-91
ISBN (Trykt) 978-3-030-98252-2
ISBN (Elektronisk)978-3-030-98253-9
DOI
StatusUdgivet - mar. 2022
Begivenhed2nd 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021 - Virtual, Online
Varighed: 27 sep. 202127 sep. 2021

Konference

Konference2nd 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021
ByVirtual, Online
Periode27/09/202127/09/2021
NavnLecture Notes in Computer Science
Vol/bind13209
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'PET Normalizations to Improve Deep Learning Auto-Segmentation of Head and Neck Tumors in 3D PET/CT'. Sammen danner de et unikt fingeraftryk.

Citationsformater