Peroxynitrous acid (ONOOH) modifies the structure of anastellin and influences its capacity to polymerize fibronectin

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Jianfei He, Københavns Universitet
  • ,
  • Eva Ramos Becares, Københavns Universitet
  • ,
  • Peter Waaben Thulstrup, Københavns Universitet
  • ,
  • Luke F. Gamon, Københavns Universitet
  • ,
  • Jannik Nedergaard Pedersen
  • Daniel Otzen
  • Pontus Gourdon, Københavns Universitet
  • ,
  • Michael J. Davies, Københavns Universitet
  • ,
  • Per Hägglund, Københavns Universitet

Anastellin (AN), a fragment of the first type III module in fibronectin (FN), initiates formation of superfibronectin, a polymer which resembles the native cell-derived fibrillar FN found in the extracellular matrix of many tissues, but which displays remarkably different functional properties. Here we demonstrate that exposure of AN to the biologically-important inflammatory oxidant, peroxynitrous acid (ONOOH), either as a bolus or formed at low levels in a time-dependent manner from SIN-1, impairs the capability of AN to polymerize FN. In contrast, exposure of FN to ONOOH does not seem to affect superfibronectin formation to the same extent. This oxidant-induced loss-of-function in AN occurs in a dose-dependent manner, and correlates with structural perturbations, loss of the amino acid tyrosine and tryptophan, and dose-dependent formation of modified amino acid side-chains (3-nitrotyrosine, di-tyrosine and 6-nitrotryptophan). Reagent ONOOH also induces formation of oligomeric species which decrease in the presence of bicarbonate, whereas SIN-1 mainly generates dimers. Modifications were detected at sub-stoichiometric (0.1-fold), or greater, molar excesses of oxidant compared to AN. These species have been localized to specific sites by peptide mass mapping. With high levels of oxidant (>100 times molar excess), ONOOH also induces unfolding of the beta-sheet structure of AN, thermal destabilization, and formation of high molecular mass aggregates. These results have important implications for the understanding of FN fibrillogenesis in vivo, and indicates that AN is highly sensitive to pathophysiological levels of oxidants such as ONOOH.

OriginalsprogEngelsk
Artikelnummer101631
TidsskriftRedox Biology
Vol/bind36
ISSN2213-2317
DOI
StatusUdgivet - sep. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 192744393