TY - JOUR
T1 - Performance of APSIM to Simulate the Dynamics of Winter Wheat Growth, Phenology, and Nitrogen Uptake from Early Growth Stages to Maturity in Northern Europe
AU - Kumar, Uttam
AU - Hansen, Elly Møller
AU - Thomsen, Ingrid Kaag
AU - Vogeler, Iris
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Performance of the APSIM (Agricultural Production Systems sIMulator) wheat model was assessed to simulate winter wheat phenology, biomass, grain yield, and nitrogen (N) uptake for its potential to optimize fertilizer applications for optimal crop growth and minimal environmental degradation. The calibration and evaluation dataset had 144 and 72 different field growing conditions (location (~7) × year (~5) × sowing date (2) × N treatment (7–13)), respectively, and included seven cultivars. APSIM simulated phenological stages satisfactorily with both model calibration and evaluation data sets with r2 of 0.97 and RMSE of 3.98–4.15 BBCH (BASF, Bayer, Ciba-Geigy, and Hoechst) scale. Simulations for biomass accumulation and N uptake during early growth stages (BBCH 28–49) were also reasonable with r2 of 0.65 and RMSE of 1510 kg ha−1, and r2 of 0.64–0.66 and RMSE of 28–39 kg N ha−1, respectively, with a higher accuracy during booting (BBCH 45–47). Overestimation of N uptake during stem elongation (BBCH 32–39) was attributed to (1) high inter-annual variability in simulations, and (2) high sensitivity of parameters regulating N uptake from soil. Calibration accuracy of grain yield and grain N was higher than that of biomass and N uptake at the early growth stages. APSIM wheat model showed high potential for optimizing fertilizer management in winter wheat cultivation in Northern Europe.
AB - Performance of the APSIM (Agricultural Production Systems sIMulator) wheat model was assessed to simulate winter wheat phenology, biomass, grain yield, and nitrogen (N) uptake for its potential to optimize fertilizer applications for optimal crop growth and minimal environmental degradation. The calibration and evaluation dataset had 144 and 72 different field growing conditions (location (~7) × year (~5) × sowing date (2) × N treatment (7–13)), respectively, and included seven cultivars. APSIM simulated phenological stages satisfactorily with both model calibration and evaluation data sets with r2 of 0.97 and RMSE of 3.98–4.15 BBCH (BASF, Bayer, Ciba-Geigy, and Hoechst) scale. Simulations for biomass accumulation and N uptake during early growth stages (BBCH 28–49) were also reasonable with r2 of 0.65 and RMSE of 1510 kg ha−1, and r2 of 0.64–0.66 and RMSE of 28–39 kg N ha−1, respectively, with a higher accuracy during booting (BBCH 45–47). Overestimation of N uptake during stem elongation (BBCH 32–39) was attributed to (1) high inter-annual variability in simulations, and (2) high sensitivity of parameters regulating N uptake from soil. Calibration accuracy of grain yield and grain N was higher than that of biomass and N uptake at the early growth stages. APSIM wheat model showed high potential for optimizing fertilizer management in winter wheat cultivation in Northern Europe.
KW - early growth stages
KW - fertilizer management
KW - modelling
KW - parameter sensitivity
KW - parameters
KW - variability
UR - http://www.scopus.com/inward/record.url?scp=85149996424&partnerID=8YFLogxK
U2 - 10.3390/plants12050986
DO - 10.3390/plants12050986
M3 - Journal article
C2 - 36903847
AN - SCOPUS:85149996424
SN - 2223-7747
VL - 12
JO - Plants
JF - Plants
IS - 5
M1 - 986
ER -