PCA-based spatial domain identification with state-of-the-art performance

Darius P. Schaub*, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G. Puelles, Christian F. Krebs, Ulf Panzer, Stefan Bonn*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Motivation: The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data. Results: Following Occam’s razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability. Availability and implementation.

OriginalsprogEngelsk
Artikelnummerbtaf005
TidsskriftBioinformatics
Vol/bind41
Nummer1
ISSN1367-4803
DOI
StatusUdgivet - jan. 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'PCA-based spatial domain identification with state-of-the-art performance'. Sammen danner de et unikt fingeraftryk.

Citationsformater