Orthogonal polynomials associated to a certain fourth order differential equation

Joachim Hilgert, Toshiyuki Kobayashi, Gen Mano, Jan Möllers

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We introduce orthogonal polynomials $M_j^{\mu,\ell}(x)$ as eigenfunctions of a certain self-adjoint fourth order differential operator depending on two parameters $\mu\in\mathbb{C}$ and $\ell\in\mathbb{N}_0$.

These polynomials arise as $K$-finite vectors in the $L^2$-model of the minimal unitary representations of indefinite orthogonal groups, and reduce to the classical Laguerre polynomials $L_j^\mu(x)$ for $\ell=0$.

We establish various recurrence relations and integral representations for our polynomials, as well as a closed formula for the $L^2$-norm. Further we show that they are uniquely determined as polynomial eigenfunctions.
OriginalsprogEngelsk
TidsskriftRamanujan Journal
Vol/bind26
Nummer3
Sider (fra-til)295-310
Antal sider16
ISSN1382-4090
DOI
StatusUdgivet - 2011
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Orthogonal polynomials associated to a certain fourth order differential equation'. Sammen danner de et unikt fingeraftryk.

Citationsformater