Ornstein-Uhlenbeck processes on Lie groups

Fabrice Baudoin, Martin Hairer, Josef Teichmann*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

16 Citationer (Scopus)

Abstract

We consider Ornstein-Uhlenbeck processes (OU-processes) associated to hypo-elliptic diffusion processes on finite-dimensional Lie groups: let L be a hypo-elliptic, left-invariant "sum of the squares"-operator on a Lie group G with associated Markov process X, then we construct OU-processes by adding negative horizontal gradient drifts of functions U. In the natural case U (x) = - log p (1, x), where p (1, x) is the density of the law of X starting at identity e at time t = 1 with respect to the right-invariant Haar measure on G, we show the Poincaré inequality by applying the Driver-Melcher inequality for "sum of the squares" operators on Lie groups. The resulting Markov process is called the natural OU-process associated to the hypo-elliptic diffusion on G. We prove the global strong existence of these OU-type processes on G under an integrability assumption on U. The Poincaré inequality for a large class of potentials U is then shown by a perturbation technique. These results are applied to obtain a hypo-elliptic equivalent of standard results on cooling schedules for simulated annealing on compact homogeneous spaces M.

OriginalsprogEngelsk
TidsskriftJournal of Functional Analysis
Vol/bind255
Nummer4
Sider (fra-til)877-890
Antal sider14
ISSN0022-1236
DOI
StatusUdgivet - 15 aug. 2008
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Ornstein-Uhlenbeck processes on Lie groups'. Sammen danner de et unikt fingeraftryk.

Citationsformater