Projekter pr. år
Abstract
The restriction of an irreducible unitary representation π of a real reductive group G to a reductive subgroup H decomposes into a direct integral of irreducible unitary representations τ of H with multiplicities m(π,τ) ∈ N ∪ {∞}. We show that on the smooth vectors of π, the direct integral is pointwise defined. This implies that m(π,τ) is bounded above by the dimension of the space Hom H(π ∞| H,τ ∞) of intertwining operators between the smooth vectors, also called symmetry breaking operators, and provides a precise relation between these two concepts of multiplicity.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Lie Theory |
Vol/bind | 32 |
Nummer | 1 |
Sider (fra-til) | 191-196 |
Antal sider | 5 |
ISSN | 0949-5932 |
Status | Udgivet - 2022 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'On the direct integral decomposition in branching laws for real reductive groups'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Symmetry Breaking in Mathematics
Frahm, J. (PI), Weiske, C. (Deltager), Ditlevsen, J. (Deltager), Spilioti, P. (Deltager), Bang-Jensen, F. J. (Deltager) & Labriet, Q. (Deltager)
01/08/2019 → 31/07/2024
Projekter: Projekt › Forskning