On the Complexity of Numerical Analysis

Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, Peter Bro Miltersen

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskning

    Abstract

    We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis. We show that both hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing an integer N, decide whether N>0. We show that PosSLP lies in the counting hierarchy, and we show that if A is any language in the Boolean part of Polynomial-time over the Reals accepted by a machine whose machine constants are algebraic real numbers, then A is in P^PosSLP. Combining our results with work of Tiwari, we show that the Euclidean Traveling Salesman Problem lies in the counting hierarchy -- the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE.
    OriginalsprogEngelsk
    TidsskriftElectronic Colloquium on Computational Complexity
    NummerTR05-037
    Sider (fra-til)1-12
    ISSN1433-8092
    StatusUdgivet - 2005

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'On the Complexity of Numerical Analysis'. Sammen danner de et unikt fingeraftryk.

    Citationsformater