On the Complexity of Numerical Analysis

Peter Bro Miltersen, Johan Kjeldgaard-Pedersen, Peter Burgisser, Eric Allender

    Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

    Abstract

    We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis. We show that both hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing an integer N, decide whether N is greater than 0. We show that PosSLP lies in the counting hierarchy, and combining our results with work of Tiwari, we show that the Euclidean Traveling Salesman Problem lies in the counting hierarchy - the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE.

    OriginalsprogEngelsk
    TitelProceedings of the 21st Annual IEEE Conference on Computational Complexity
    Antal sider9
    ForlagIEEE Computer Society Press
    Publikationsdato2006
    Sider331-339
    StatusUdgivet - 2006
    BegivenhedIEEE Conference on Computational Complexity - Prague, Tjekkiet
    Varighed: 17 dec. 2010 → …
    Konferencens nummer: 21

    Konference

    KonferenceIEEE Conference on Computational Complexity
    Nummer21
    Land/OmrådeTjekkiet
    ByPrague
    Periode17/12/2010 → …

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'On the Complexity of Numerical Analysis'. Sammen danner de et unikt fingeraftryk.

    Citationsformater