On shrinking targets for Zm actions on tori

Yann Bugeaud, Stephen Harrap, S. Kristensen, Sanju Velani

    Publikation: Working paper/Preprint Working paperForskning

    Abstract

    Let $A$ be an $n \times m$ matrix with real entries. Consider the set $\mathbf{Bad}_A$ of $\mathbf{x} \in [0,1)^n$ for which there exists a constant $c(\mathbf{x})>0$ such that for any $\mathbf{q} \in \mathbb{Z}^m$ the distance between $\mathbf{x}$ and the point $\{A \mathbf{q}\}$ is at least $c(\mathbf{x}) |\mathbf{q}|^{-m/n}$. It is shown that the intersection of $\mathbf{Bad}_A$ with any suitably regular fractal set is of maximal Hausdorff dimension. The linear form systems investigated in this paper are natural extensions of irrational rotations of the circle. Even in the latter one-dimensional case, the results obtained are new.
    OriginalsprogEngelsk
    UdgivelsesstedÅrhus
    UdgiverDepartment of Mathematical Sciences, Aarhus University
    Sider1-12
    Antal sider12
    StatusUdgivet - 2008

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'On shrinking targets for Zm actions on tori'. Sammen danner de et unikt fingeraftryk.

    Citationsformater