Aarhus University Seal / Aarhus Universitets segl

On shrinking targets for Zm actions on tori

Publikation: Working paperForskning

  • Yann Bugeaud, Université Louis Pasteur, Frankrig
  • Stephen Harrap, University of York, Storbritannien
  • S. Kristensen
  • Sanju Velani, University of York, Storbritannien
  • Institut for Matematiske Fag
Let $A$ be an $n \times m$ matrix with real entries. Consider the set $\mathbf{Bad}_A$ of $\mathbf{x} \in [0,1)^n$ for which there exists a constant $c(\mathbf{x})>0$ such that for any $\mathbf{q} \in \mathbb{Z}^m$ the distance between $\mathbf{x}$ and the point $\{A \mathbf{q}\}$ is at least $c(\mathbf{x}) |\mathbf{q}|^{-m/n}$. It is shown that the intersection of $\mathbf{Bad}_A$ with any suitably regular fractal set is of maximal Hausdorff dimension. The linear form systems investigated in this paper are natural extensions of irrational rotations of the circle. Even in the latter one-dimensional case, the results obtained are new.
OriginalsprogEngelsk
UdgivelsesstedÅrhus
UdgiverDepartment of Mathematical Sciences, Aarhus University
Sider1-12
Antal sider12
StatusUdgivet - 2008

Se relationer på Aarhus Universitet Citationsformater

ID: 14665164