Aarhus Universitets segl

Numerical and experimental analysis of resin-flow, heat-transfer, and cure in a resin-injection pultrusion process

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Michael Sandberg
  • Onur Yuksel, University of Twente
  • ,
  • Ismet Baran, University of Twente
  • ,
  • Jesper H. Hattel, Danmarks Tekniske Universitet
  • ,
  • Jon Spangenberg, Danmarks Tekniske Universitet

This paper concerns non-isothermal flow in a thermoset resin-injection pultrusion process. Supported by temperature measurements from an industrial pultrusion line and a material characterisation study (curing kinetics, chemorheology, and permeability), the material flow was analysed for the manufacture of a thick glass-fibre profile saturated with a pultrusion-specific polyurethane resin. A central finding is that the heating configuration, together with the strongly convective flow near inlets resulted in phase transitions that were both concave and convex-shaped. This is different from existing literature that commonly describes curing being initiated from die-walls, resulting in the concave phase-transitions.

TidsskriftComposites Part A: Applied Science and Manufacturing
Antal sider15
StatusUdgivet - apr. 2021
Eksternt udgivetJa

Bibliografisk note

Funding Information:
This work was funded by the Danish Council for Independent Research ? Technology and Production Sciences (Grant No. DFF-6111-00112: Modelling the multi-physics in resin injection pultrusion (RIP) of complex industrial profiles). The first author would like to acknowledge the assistance he received from doctoral students Ayyoub Kabachi and Maximilian Volk with conducting the permeability experiments during a research stay at CMASLab (ETH Z?rich).

Publisher Copyright:
© 2020 Elsevier Ltd

Copyright 2021 Elsevier B.V., All rights reserved.

Se relationer på Aarhus Universitet Citationsformater

ID: 215943664