Aarhus University Seal / Aarhus Universitets segl

Norm resolvent convergence of discretized Fourier multipliers

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


  • Horia Cornean, Institut for Matematiske Fag, Aalborg Universitet, Danmark
  • Henrik Garde
  • Arne Jensen, Institut for Matematiske Fag, Aalborg Universitet, Danmark
We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and Hölder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance.
TidsskriftJournal of Fourier Analysis and Applications
StatusAfsendt - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 199766718