Nonlinearity, Breaks, and Long-Range Dependence in Time Series Models

Eric Hillebrand, Marcelo C. Medeiros

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

9 Citationer (Scopus)
199 Downloads (Pure)

Abstract

We study the simultaneous occurrence of long memory and nonlinear effects, such as parameter changes and threshold effects, in time series models and apply our modeling framework to daily realized measures of integrated variance. We develop asymptotic theory for parameter estimation and propose two model-building procedures. The methodology is applied to stocks of the Dow Jones Industrial Average during the period 2000 to 2009. We find strong evidence of nonlinear effects in financial volatility. An out-of-sample analysis shows that modeling these effects can improve forecast performance. Supplementary materials for this article are available online.

OriginalsprogEngelsk
TidsskriftJournal of Business and Economic Statistics
Vol/bind34
Nummer1
Sider (fra-til)23-41
Antal sider19
ISSN0735-0015
DOI
StatusUdgivet - 2 jan. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Nonlinearity, Breaks, and Long-Range Dependence in Time Series Models'. Sammen danner de et unikt fingeraftryk.

Citationsformater