Nonlinear autoregressive models with optimality properties

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Francisco Blasques, Vrije Universiteit Amsterdam
  • ,
  • Siem Jan Koopman
  • André Lucas, Vrije Universiteit Amsterdam

We introduce a new class of nonlinear autoregressive models from their representation as linear autoregressive models with time-varying coefficients. The parameter updating scheme is subsequently based on the score of the predictive likelihood function at each point in time. We study in detail the information theoretic optimality properties of this updating scheme and establish the asymptotic theory for the maximum likelihood estimator of the static parameters of the model. We compare the dynamic properties of the new model with those of well-known nonlinear dynamic models such as the threshold and smooth transition autoregressive models. Finally, we study the model’s performance in a Monte Carlo study and in an empirical out-of-sample forecasting analysis for U.S. macroeconomic time series.

OriginalsprogEngelsk
TidsskriftEconometric Reviews
Vol/bind39
Nummer6
Sider (fra-til)559-578
Antal sider20
ISSN0747-4938
DOI
StatusUdgivet - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 184524706