(Non)-escape of mass and equidistribution for horospherical actions on trees

Corina Ciobotaru, Vladimir Finkelshtein, Cagri Sert*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

Let G be a large group acting on a biregular tree T and Γ ≤ G a geometrically finite lattice. In an earlier work, the authors classified orbit closures of the action of the horospherical subgroups on G/ Γ. In this article we show that there is no escape of mass and use this to prove that, in fact, dense orbits equidistribute to the Haar measure on G/ Γ. On the other hand, we show that new dynamical phenomena for horospherical actions appear on quotients by non-geometrically finite lattices: we give examples of non-geometrically finite lattices where an escape of mass phenomenon occurs and where the orbital averages along a Følner sequence do not converge. In the last part, as a by-product of our methods, we show that projections to Γ \ T of the uniform distributions on large spheres in the tree T converge to a natural probability measure on Γ \ T. Finally, we apply this equidistribution result to a lattice point counting problem to obtain counting asymptotics with exponential error term.

OriginalsprogEngelsk
TidsskriftMathematische Zeitschrift
Vol/bind300
Nummer2
Sider (fra-til)1673-1704
Antal sider32
ISSN0025-5874
DOI
StatusUdgivet - feb. 2022
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om '(Non)-escape of mass and equidistribution for horospherical actions on trees'. Sammen danner de et unikt fingeraftryk.

Citationsformater