Nitric Acid and Organic Acids Suppress the Role of Methanesulfonic Acid in Atmospheric New Particle Formation

Yosef Knattrup, Jakub Kubečka, Jonas Elm*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


Multicomponent atmospheric molecular clusters, typically comprising a combination of acids and bases, play a pivotal role in our climate system and contribute to the perplexing uncertainties embedded in modern climate models. Our understanding of cluster formation is limited by the lack of studies on complex mixed-acid-mixed-base systems. Here, we investigate multicomponent clusters consisting of mixtures of several acid and base molecules: sulfuric acid (SA), methanesulfonic acid (MSA), nitric acid (NA), formic acid (FA), along with methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). We calculated the binding free energies of a comprehensive set of 252 mixed-acid-mixed-base clusters at the DLPNO-CCSD(T 0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory. Combined with the existing datasets, we simulated the new particle formation (NPF) rates using the Atmospheric Cluster Dynamics Code (ACDC). We find that the presence of NA and FA had a substantial impact, increasing the NPF rate by 60% at realistic conditions. Intriguingly, we find that NA and FA suppress the role of MSA in NPF. These findings suggest that even high concentration of MSA has a limited impact on NPF in polluted regions with high FA and NA. We outline a method for generating a lookup table that could potentially be used in climate models that sufficiently incorporates all the required chemistry. By unraveling the molecular mechanisms of mixed-acid-mixed-base clusters, we get one step closer to comprehending their implications for our global climate system.

TidsskriftThe Journal of Physical Chemistry A
Sider (fra-til)7568-7578
Antal sider11
StatusUdgivet - sep. 2023


Dyk ned i forskningsemnerne om 'Nitric Acid and Organic Acids Suppress the Role of Methanesulfonic Acid in Atmospheric New Particle Formation'. Sammen danner de et unikt fingeraftryk.