Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • E. L. Kolsbjerg
  • ,
  • A. A. Peterson, Brown Univ, Brown University, Sch Engn
  • ,
  • B. Hammer

We show that approximate structural relaxation with a neural network enables orders of magnitude faster global optimization with an evolutionary algorithm in a density functional theory framework. The increased speed facilitates reliable identification of global minimum energy structures, as exemplified by our finding of a hollow Pt-13 nanoparticle on an MgO support. We highlight the importance of knowing the correct structure when studying the catalytic reactivity of the different particle shapes. The computational speedup further enables screening of hundreds of different pathways in the search for optimum kinetic transitions between low-energy conformers and hence pushes the limits of the insight into thermal ensembles that can be obtained from theory.

OriginalsprogEngelsk
Artikelnummer195424
TidsskriftPhysical Review B
Vol/bind97
Nummer19
Antal sider9
ISSN2469-9950
DOI
StatusUdgivet - 16 maj 2018

Se relationer på Aarhus Universitet Citationsformater

ID: 127852340