Nets of standard subspaces on non-compactly causal symmetric spaces

Jan Frahm, Karl-Hermann Neeb, Gestur Ólafsson

Publikation: Bidrag til bog/antologi/rapport/proceedingBidrag til bog/antologiForskningpeer review

Abstract

Let G be a connected simple linear Lie group and H in G a symmetric subgroup such that the corresponding symmetric space G/H is non-compactly causal. We show that any irreducible unitary representation of G leads naturally to a net of standard subspaces on G/H that is isotone, covariant and has the Reeh--Schlieder and the Bisognano--Wichmann property. We also show that this result extends to the universal covering group of SL(2,R) which has some interesting application to intersections of standard subspaces associated to representations of such groups. For this a detailed study of hyperfunction and distribution vectors is needed. In particular we show that every H-finite hyperfunction vector is in fact a distribution vector.
OriginalsprogEngelsk
TitelSymmetry in Geometry and Analysis : Festschrift in Honor of Toshiyuki Kobayashi
RedaktørerMichael Pevzner, Hideko Sekiguchi
Antal sider81
Vol/bind2
ForlagBirkhäuser Verlag
Publikationsdatomar. 2025
Sider115-195
Kapitel5
ISBN (Trykt)978-9819784486
DOI
StatusUdgivet - mar. 2025
NavnProgress in Mathematics
Vol/bind358
ISSN0743-1643

Fingeraftryk

Dyk ned i forskningsemnerne om 'Nets of standard subspaces on non-compactly causal symmetric spaces'. Sammen danner de et unikt fingeraftryk.
  • Symmetry Breaking in Mathematics

    Frahm, J. (PI), Weiske, C. (Deltager), Ditlevsen, J. (Deltager), Spilioti, P. (Deltager), Bang-Jensen, F. J. (Deltager) & Labriet, Q. (Deltager)

    01/08/201931/07/2024

    Projekter: ProjektForskning

Citationsformater