Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Nearly Kähler six-manifolds with two-torus symmetry
AU - Russo, Giovanni
AU - Swann, Andrew Francis
PY - 2019
Y1 - 2019
N2 - We consider nearly Kähler six-manifolds with effective 2-torus symmetry. The multi-moment map for the $T^2$-action becomes an eigenfunction of the Laplace operator. At regular values, we prove the $T^2$-action is necessarily free on the level sets and determines the geometry of three-dimensional quotients. An inverse construction is given locally producing nearly Kähler six-manifolds from three-dimensional data. This is illustrated for structures on the Heisenberg group.
AB - We consider nearly Kähler six-manifolds with effective 2-torus symmetry. The multi-moment map for the $T^2$-action becomes an eigenfunction of the Laplace operator. At regular values, we prove the $T^2$-action is necessarily free on the level sets and determines the geometry of three-dimensional quotients. An inverse construction is given locally producing nearly Kähler six-manifolds from three-dimensional data. This is illustrated for structures on the Heisenberg group.
KW - Nearly Kähler
KW - Multi-moment map
KW - Toric manifold
U2 - 10.1016/j.geomphys.2018.12.016
DO - 10.1016/j.geomphys.2018.12.016
M3 - Journal article
VL - 138
SP - 144
EP - 153
JO - Journal of Geometry and Physics
JF - Journal of Geometry and Physics
SN - 0393-0440
IS - April
ER -