Publikation: Bidrag til bog/antologi/rapport/proceeding › Konferencebidrag i proceedings › Forskning › peer review
Forlagets udgivne version
We propose a novel multivariate signal denoising method that performs long-range correlation analysis of multiple modes in input data by considering inherent inter-channel dependencies of the data. That is achieved through a novel and generic multivariate extension of detrended fluctuation analysis (DFA) method - another contribution of this paper. Specifically, our proposed denoising method first obtains data driven multiscale signal representation using multivariate variational mode decomposition (MVMD) method. Then, the proposed generic multivariate DFA is used to reject the predominantly noisy modes based on their randomness scores. Finally, the denoised signal is reconstructed by summing the remaining modes albeit after the removal of the noise traces using the principal component analysis (PCA).
Originalsprog | Engelsk |
---|---|
Titel | 2021 IEEE Statistical Signal Processing Workshop, SSP 2021 |
Antal sider | 5 |
Forlag | IEEE |
Udgivelsesår | jul. 2021 |
Sider | 441-445 |
ISBN (Elektronisk) | 9781728157672 |
DOI | |
Status | Udgivet - jul. 2021 |
Begivenhed | 21st IEEE Statistical Signal Processing Workshop, SSP 2021 - Virtual, Rio de Janeiro, Brasilien Varighed: 11 jul. 2021 → 14 jul. 2021 |
Konference | 21st IEEE Statistical Signal Processing Workshop, SSP 2021 |
---|---|
Land | Brasilien |
By | Virtual, Rio de Janeiro |
Periode | 11/07/2021 → 14/07/2021 |
Serietitel | IEEE Workshop on Statistical Signal Processing Proceedings |
---|---|
Vol/bind | 2021-July |
Se relationer på Aarhus Universitet Citationsformater
ID: 223687956