Multiplier theorems via martingale transforms

Rodrigo Bañuelos*, Fabrice Baudoin, Li Chen, Yannick Sire

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Abstract

We develop a new and general approach to prove multiplier theorems in various geometric settings. The main idea is to use martingale transforms and a Gundy-Varopoulos representation for multipliers defined via a suitable extension procedure. Along the way, we provide a probabilistic proof of a generalization of a result by Stinga and Torrea, which is of independent interest. Our methods here also recover the sharp Lp bounds for second order Riesz transforms by a limiting argument.

OriginalsprogEngelsk
Artikelnummer109188
TidsskriftJournal of Functional Analysis
Vol/bind281
Nummer9
ISSN0022-1236
DOI
StatusUdgivet - 1 nov. 2021
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Multiplier theorems via martingale transforms'. Sammen danner de et unikt fingeraftryk.

Citationsformater